VTUEEE 2022 Syllabus (Released): Check Sectionwise Exam Syllabus Here
VTUEEE Syllabus has been released. The Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology has released the VTUEEE 2022 syllabus. VTUEEE syllabus consist of all the important topics, which a applicants should study thoroughly for the exam.
Applicants can go through the VTUEEE Physics, Chemistry, and Mathematics syllabus. Besides, go through the VTUEEE exam pattern in order to get information of the number of questions, marking scheme, etc. Applicants should make the preparation strategy keeping the syllabus and exam pattern in their mind.
VTUEEE exam dates for Phase I and Phase II will be available soon. So, start preparing for VTUEEE exam 2022 and regularly keep practicing VTUEEE question papers from time to time to boost your confidence as well as knowledge.
Latest Applications For Various UG & PG Courses Open 2023

 IIAD, Delhi  Admissions Open for All Courses 2023. Apply Now
 SAITM, Haryana  Admissions Open for All Courses 2023. Apply Now
 IMS, Ghaziabad  Admissions Open for All Courses 2023. Apply Now
 MIT WPU, Pune  Admissions Open for All Courses 2023. Apply Now
 UPES, Dehradun  Admissions Open for All Courses 2023. Apply Now
 GNIOT, Greater Noida Admissions Open for All Courses 2023. Apply Now
 Amrita Btech Admissions Open for All Courses 2023. Apply Now
 Parul University, Gujarat  Admissions Open for All Courses 2023. Apply Now
 NIMS University, Jaipur  Admissions Open for All Courses 2023. Apply Now
 Bennett University, Noida Admissions Open for All Courses 2023. Apply Now
 Chandigarh University, Punjab  Admissions Open for All Courses 2023. Apply Now
 Lovely Professional University, Punjab  Management Admissions Closing Soon! Apply Now
Scheme of Examination: VTUEE Exam Pattern 2022:
COMPUTER BASED TEST (CBT) – VTUEEE
PAPER AND PEN TEST (PPT) – VTUEEE
The question paper pattern will be similar to JEE Mains exam
•Duration of exam is 3 hours (180 minutes).
•The question paper consists of 90 questions.
•There are three parts in the question paper A,B,C consisting of Physics, Chemistry and Mathematics having
30 questions in each part of equal weightage .
•Each question is allotted 4 (four) marks for correct response.
•¼ (one fourth) marks will be deducted for indicating incorrect response of each question. No deduction from
the total score will be made if no response is indicated for an item in the answer sheet.
•There is only one correct response for each question. Filling up more than one response in any question will be
treated as wrong response and marks for wrong response will be deducted.
VTUEEE Syllabus and Pattern:
Language  Download Syllabus PDF Here 
Maths Syllabus  Click Here 
Physics Syllabus  Click Here 
Chemisry Syllabus  Click Here 
VTUEEE Mathematics Syllabus:
SETS, RELATIONS AND FUNCTIONS:
Sets and their representation; Union, intersection and complement of sets and their algebraic properties; Power set; Relation, Types of relations, equivalence relations, functions;. oneone, into and onto functions, composition of functions.
COMPLEX NUMBERS AND QUADRATIC EQUATIONS:
Complex numbers as ordered pairs of reals, Representation of complex numbers in the form a+ib and their representation in a plane, Argand diagram, algebra of complex numbers, modulus and argument (or amplitude) of a complex number, square root of a complex number, triangle inequality, Quadratic equations in real and complex number system and their solutions. Relation between roots and coefficients, nature of roots, formation of quadratic equations with given roots.
MATRICES AND DETERMINANTS:
Matrices, algebra of matrices, types of matrices, determinants and matrices of order two and three. Properties of determinants, evaluation of determinants, area of triangles using determinants. Adjoint and evaluation of inverse of a square matrix using determinants and elementary transformations, Test of consistency and solution of simultaneous linear equations in two or three variables using determinants and matrices.
PERMUTATIONS AND COMBINATIONS:
Fundamental principle of counting, permutation as an arrangement and combination as selection, Meaning of P (n,r) and C (n,r), simple applications.
MATHEMATICAL INDUCTION:
Principle of Mathematical Induction and its simple applications.
Latest Applications For Various UG & PG Courses Open 2023

 MIT WPU, Pune  Admissions Open for All Courses 2023. Apply Now
 SAITM, Haryana  Admissions Open for All Courses 2023. Apply Now
 ISME UG, ISME PG  Admissions Open for All Courses 2023. Apply Now
 GNIOT, Greater Noida Admissions Open for All Courses 2023. Apply Now
 CGC Landran, Punjab  Admissions Open for All Courses 2023. Apply Now
 CGC Jhanjheri, Punjab  Admissions Open for All Courses 2023. Apply Now
 Amrita Btech, Tamil Nadu Admissions Open for All Courses 2023. Apply Now
 JECRC University, Gujarat  Admissions Open for All Courses 2023. Apply Now
 NIMS University, Jaipur  Admissions Open for All Courses 2023. Apply Now
 Bennett University, Noida Admissions Open for All Courses 2023. Apply Now
 Chandigarh University, Punjab  Admissions Open for All Courses 2023. Apply Now
 Sharda University, Greater Noida  Admissions Open for All Courses 2023. Apply Now
BINOMIAL THEOREM AND ITS SIMPLE APPLICATIONS:
Binomial theorem for a positive integral index, general term and middle term, properties of Binomial coefficients and simple applications.
VTUEEE 2022 Physics Syllabus:
PHYSICS AND MEASUREMENT
Physics, technology and society, S I units, Fundamental and derived units. Least count, accuracy and precision of measuring instruments, Errors in measurement, Dimensions of Physical quantities, dimensional analysis and its applications.
KINEMATICS
Frame of reference. Motion in a straight line: Positiontime graph, speed and velocity. Uniform and nonuniform motion, average speed and instantaneous velocity Uniformly accelerated motion, velocitytime, positiontime graphs, relations for uniformly accelerated motion. Scalars and Vectors, Vector addition and Subtraction, Zero Vector, Scalar and Vector products, Unit Vector, Resolution of a Vector. Relative Velocity, Motion in a plane, Projectile Motion, Uniform Circular Motion.
LAWS OF MOTION
Force and Inertia, Newton’s First Law of motion; Momentum, Newton’s Second Law of motion; Impulse; Newton’s Third Law of motion. Law of conservation of linear momentum and its applications, Equilibrium of concurrent forces. Static and Kinetic friction, laws of friction, rolling friction. Dynamics of uniform circular motion: Centripetal force and its applications.
WORK, ENERGY AND POWER
Work done by a constant force and a variable force; kinetic and potential energies, work energy theorem, power.
Potential energy of a spring, conservation of mechanical energy, conservative and nonconservative forces; Elastic and inelastic collisions in one and two dimensions.
ROTATIONAL MOTION
Centre of mass of a twoparticle system, Centre of mass of a rigid body; Basic concepts of rotational motion; moment of a force, torque, angular momentum, conservation of angular momentum and its applications; moment of inertia, radius of gyration. Values of moments of inertia for simple geometrical objects, parallel and perpendicular axes theorems and their applications. Rigid body rotation, equations of rotational motion.
GRAVITATION
The universal law of gravitation. Acceleration due to gravity and its variation with altitude and depth. Kepler’s laws of planetary motion. Gravitational potential energy; gravitational potential. Escape velocity. Orbital velocity of a satellite. Geostationary satellites.
PROPERTIES OF SOLIDS AND LIQUIDS
Elastic behaviour, Stressstrain relationship, Hooke’s Law, Young’s modulus, bulk modulus, modulus of rigidity. Pressure due to a fluid column; Pascal’s law and its applications. Viscosity, Stokes’ law, terminal velocity, streamline and turbulent flow, Reynolds number. Bernoulli’s principle and its applications. Surface energy and surface tension, angle of contact, application of surface tension – drops, bubbles and capillary rise. Heat, temperature, thermal expansion; specific heat capacity, calorimetry; change of state, latent heat. Heat transferconduction, convection and radiation, Newton’s law of cooling.
THERMODYNAMICS
Thermal equilibrium, zeroth law of thermodynamics, concept of temperature. Heat, work and internal energy. First law of thermodynamics. Second law of thermodynamics: reversible and irreversible processes. Carnot engine and its efficiency.
KINETIC THEORY OF GASES
Equation of state of a perfect gas, work doneon compressing a gas. Kinetic theory of gases – assumptions, concept of pressure. Kinetic energy and temperature: rms speed of gas molecules; Degrees of freedom, Law of equipartition of energy, applications to specific heat capacities of gases; Mean free path, Avogadro’s number.
OSCILLATIONS AND WAVES
Periodic motion – period, frequency, displacement as a function of time. Periodic functions. Simple harmonic motion (S.H.M.) and its equation; phase; oscillations of a spring restoring force and force constant; energy in S.H.M. – kinetic and potential energies; Simple pendulum – derivation of expression for its time period; Free, forced and damped oscillations, resonance. Wave motion. Longitudinal and transverse waves, speed of a wave. Displacement relation for a progressive wave. Principle of superposition of waves, reflection of waves, Standing waves in strings and organ pipes, fundamental mode and harmonics, Beats, Doppler effect in sound.
ELECTROSTATICS
Electric charges: Conservation of charge, Coulomb’s lawforces between two point charges, forces between multiple charges; superposition principle and continuous charge distribution.
Electric field: Electric field due to a point charge, Electric field lines, Electric dipole, Electric
field due to a dipole, Torque on a dipole in a uniform electric field. Electric flux, Gauss’s law and its applications to find field due to infinitely long uniformly charged straight wire, uniformly charged infinite plane sheet and uniformly charged thin spherical shell. Electric potential and its calculation for a point charge, electric dipole and system
of charges; Equipotential surfaces, Electrical potential energy of a system of two point charges in an electrostatic field. Conductors and insulators, Dielectrics and electric polarization, capacitor, combination of capacitors in series and in parallel, capacitance of a parallel plate capacitor with and without dielectric medium between the plates, Energy stored in a capacitor.
CURRRENT ELECTRICITY
Electric current, Drift velocity, Ohm’s law, Electrical resistance, Resistances of different materials, VI characteristics of Ohmic and nonohmic conductors, Electrical energy and power, Electrical resistivity, Colour code for resistors; Series and parallel combinations of resistors; Temperature dependence of resistance. Electric Cell and its Internal resistance, potential difference and emf of a cell, combination of cells in series and in parallel. Kirchhoff’s laws and
their applications. Wheatstone bridge, Metre bridge. Potentiometer – principle and its applications.
MAGNETIC EFFECTS OF CURRENT AND MAGNETISM
Biot – Savart law and its application to current carrying circular loop. Ampere’s law and its applications to infinitely long current carrying straight wire and solenoid. Force on a moving charge in uniform magnetic and electric fields. Cyclotron. Force on a currentcarrying conductor in a uniform magnetic field. Force between two parallel
currentcarrying conductorsdefinition of ampere. Torque experienced by a current loop in uniform magnetic field; Moving coil galvanometer, its current sensitivity and conversion to ammeter and voltmeter. Current loop as a magnetic dipole and its magnetic dipole moment. Bar magnet as an equivalent solenoid, magnetic field lines; Earth’s magnetic field and magnetic elements. Para, dia and ferro magnetic substances. Magnetic susceptibility and permeability, Hysteresis, Electromagnets and permanent magnets.
ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENTS
Electromagnetic induction; Faraday’s law, induced emf and current; Lenz’s Law, Eddy currents. Self and mutual inductance. Alternating currents, peak and rms value of alternating current/ voltage; reactance and impedance; LCR series circuit, resonance; Quality factor, power in AC circuits, wattless current. AC generator and transformer.
ELECTROMAGNETIC WAVES
Electromagnetic waves and their characteristics. Transverse nature of electromagnetic waves. Electromagnetic spectrum (radio waves, microwaves, infrared, visible, ultraviolet, Xrays, gamma rays). Applications of e.m. waves.
OPTICS
Reflection and refraction of light at plane and spherical surfaces, mirror formula, Total internal reflection and its applications, Deviation and Dispersion of light by a prism, Lens Formula, Magnification, Power of a Lens, Combination of thin lenses in contact, Microscope and Astronomical Telescope (reflecting and refracting) and their magnifyingpowers.
Wave optics: wavefront and Huygens’ principle, Laws of reflection and refraction using Huygen’s principle. Interference, Young’s double slit experiment and expression for fringe width. Diffraction due to a single slit, width of central maximum. Resolving power of microscopes and astronomical telescopes, Polarisation, plane polarized light; Brewster’s law, uses of plane polarized light and Polaroids.
DUAL NATURE OF MATTER ANDRADIATION
Dual nature of radiation. Photoelectric effect, Hertz and Lenard’s observations; Einstein’s photoelectric equation; particle nature of light. Matter waveswave nature of particle, de Broglie relation. DavissonGermer experiment.
ATOMS AND NUCLEI
Alphaparticle scattering experiment; Rutherford’s model of atom; Bohr model, energy levels, hydrogen spectrum. Composition and size of nucleus, atomic masses, isotopes, isobars; isotones. Radioactivityalpha, beta and gamma particles/rays and their properties; radioactive decay law. Massenergy relation, mass defect; binding energy per nucleon and its variation with mass number, nuclear fission and fusion.
ELECTRONIC DEVICES
Semiconductors; semiconductor diode: IV characteristics in forward and reverse bias; diode as a rectifier; IV characteristics of LED, photodiode, solar cell and Zener diode; Zener diode as a voltage regulator. Junction transistor, transistor action, characteristics of a transistor; transistor as an amplifier (common emitter configuration) and oscillator. Logic gates (OR, AND, NOT, NAND and NOR). Transistor as a switch.
COMMUNICATION SYSTEMS
Propagation of electromagnetic waves in the atmosphere; Sky and space wave propagation, Need for modulation, Amplitude and Frequency Modulation, Bandwidth of signals, Bandwidth of Transmission medium, Basic Elements of a Communication System (Block Diagram only).
VTUEEE Chemistry Syllabus:
SOME BASIC CONCEPTS IN CHEMISTRY
Matter and its nature, Dalton’s atomic theory; Concept of atom, molecule, element and compound; Physical quantities and their measurements in Chemistry, precision and accuracy, significant figures, S.I. Units, dimensional analysis; Laws of chemical combination; Atomic and molecular masses, mole concept, molar mass, percentage composition, empirical and molecular formulae; Chemical equations and stoichiometry.
STATES OF MATTER
Classification of matter into solid, liquid and gaseous states.
Gaseous State: Measurable properties of gases; Gas laws – Boyle’s law, Charle’s law, Graham’s law of diffusion, Avogadro’s law, Dalton’s law of partial pressure; Concept of Absolute scale of temperature; Ideal gas equation; Kinetic theory of gases (only postulates); Concept of average,
root mean square and most probable velocities; Real gases, deviation from Ideal behaviour, compressibility factor and van der Waals equation.
Liquid State: Properties of liquids – vapour pressure, viscosity and surface tension and effect of temperature on them (qualitative treatment only).
Solid State: Classification of solids: molecular, ionic, covalent and metallic solids, amorphous and crystalline solids (elementary idea); Bragg’s Law and its applications; Unit cell and lattices, packing in solids (fcc, bcc and hcp lattices), voids, calculations involving unit cell parameters, imperfection in solids; Electrical, magnetic and dielectric properties.
ATOMIC STRUCTURE
Thomson and Rutherford atomic models and their limitations; Nature of electromagnetic radiation, photoelectric effect; Spectrum of hydrogen atom, Bohr model of hydrogen atom – its postulates, derivation of the relations for energy of the electron and radii of the different orbits, limitations of Bohr’s model; Dual nature of matter, deBroglie’s relationship, Heisenberg uncertainty principle. Elementary ideas of quantum mechanics, quantum mechanical model of atom, its important features. Concept of atomic orbitals as one electron wave functions;
Variation of Ψ and Ψ2 with r for 1s and 2s orbitals; various quantum numbers (principal, angular momentum and magnetic quantum numbers) and their significance; shapes of s, p and d – orbitals, electron spin and spin quantum number; Rules for filling electrons in orbitals – aufbau principle, Pauli’s exclusion principle and Hund’s rule, electronic configuration of elements, extra stability of halffilled and completely filled orbitals.
CHEMICAL BONDING AND MOLECULAR STRUCURE
Kossel – Lewis approach to chemical bond formation, concept of ionic and covalent bonds.
Ionic Bonding: Formation of ionic bonds, factors affecting the formation of ionic bonds; calculation of lattice enthalpy.
Covalent Bonding: Concept of electronegativity, Fajan’s rule, dipole moment; Valence Shell Electron Pair Repulsion (VSEPR) theory and shapes of simple molecules. Quantum mechanical approach to covalent bonding: Valence bond theory – Its important features, concept of hybridization involving s, p and d orbitals; Resonance.
Molecular Orbital Theory – Its important features, LCAOs, types of molecular orbitals (bonding, antibonding), sigma and pibonds, molecular orbital electronic configurations of homonuclear diatomic molecules, concept of bond order, bond length and bond energy. Elementary idea of metallic bonding. Hydrogen bonding and its applications.
CHEMICAL THERMODYNAMICS
Fundamentals of thermodynamics: System and surroundings, extensive and intensive properties, state functions, types of processes.
First law of thermodynamics – Concept of work, heat internal energy and enthalpy, heat capacity, molar heat capacity; Hess’s law of constant heat summation; Enthalpies of bond dissociation, combustion, formation, atomization, sublimation, phase transition, hydration, ionization and solution.
Second law of thermodynamics; Spontaneity of processes; ΔS of the universe and ΔG of the system as criteria for spontaneity, Δg° (Standard Gibbs energy change) and equilibrium constant.
SOLUTIONS
Different methods for expressing concentration of solution – molality, molarity, mole fraction, percentage (by volume and mass both), vapour pressure of solutions and Raoult’s Law – Ideal and nonideal solutions, vapour pressure – composition, plots for ideal and nonideal solutions; Colligative properties of dilute solutions – relative lowering of vapour pressure, depression of freezing point, elevation of boiling point and osmotic pressure; Determination of molecular mass using colligative properties; Abnormal value of molar mass, van’t Hoff factor and its significance.
EQUILIBRIUM
Meaning of equilibrium, concept of dynamic equilibrium. Equilibria involving physical processes: Solid liquid, liquid – gas and solid – gas equilibria, Henry’s law, general characterics of equilibrium involving physical processes.
Equilibria involving chemical processes: Law of chemical equilibrium, equilibrium constants (Kp and Kc) and their significance, significance of ΔG and ΔG° in chemical equilibria, factors affecting equilibrium concentration, pressure, temperature, effect of catalyst; Le Chatelier’s principle.
Ionic equilibrium: Weak and strong electrolytes, ionization of electrolytes, various concepts of acids and bases (Arrhenius, Bronsted – Lowry and Lewis) and their ionization, acid – base equilibria (including multistage ionization) and ionization constants, ionization of water, pH scale, common ion effect, hydrolysis of salts and pH of their solutions, solubility of sparingly soluble salts and solubility products, buffer solutions.
REDOX REACTIONS AND ELECTROCHEMISTRY
Electronic concepts of oxidation and reduction, redox reactions, oxidation number, rules for assigning oxidation number, balancing of redox reactions. Eectrolytic and metallic conduction, conductance in electrolytic solutions, specific and molar conductivities and their variation with concentration: Kohlrausch’s law and its applications.
Electrochemical cells – Electrolytic and Galvanic cells, different types of electrodes, electrode potentials including standard electrode potential, half – cell and cell reactions, emf of a Galvanic cell and its measurement; Nernst equation and its applications; Relationship between cell potential and Gibbs’ energy change; Dry cell and lead accumulator; Fuel cells.
CHEMICAL KINETICS
Rate of a chemical reaction, factors affecting the rate of reactions: concentration, temperature, pressure and catalyst; elementary and complex reactions, order and molecularity of reactions, rate law, rate constant and its units, differential and integral forms of zero and first order reactions, their characteristics and half – lives, effect of temperature on rate of reactions – Arrhenius theory, activation energy and its calculation, collision theory of bimolecular gaseous reactions (no derivation).
SURFACE CHEMISTRY
Adsorption Physisorption and chemisorption and their characteristics, factors affecting adsorption of gases on solids – Freundlich and Langmuir adsorption isotherms, adsorption from solutions.
Colloidal state – distinction among true solutions, colloids and suspensions, classification of colloids – lyophilic, lyophobic; multi molecular, macromolecular and associated colloids (micelles), preparation and properties of colloids – Tyndall effect, Brownian movement, electrophoresis, dialysis, coagulation and flocculation; Emulsions and their characteristics.